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We consider the spectral properties of a model quantum system describing the coupling of bound
states to a number of decay channels. We describe the separation of a few modes from the set of all
resonances during the transition from low to high coupling strength between bound and continuum
states (trapping effect) leading at high coupling to the formation of two time scales in terms of the
lifetimes of the resonance states. In particular, we give a detailed analysis of the critical region where
the system finds its new resonance structure. Eigenvalues, eigenfunctions, and their degree of mixing
in relation to the corresponding wave functions of the closed system, as well as cross sections, are
studied analytically and numerically for the cases of two and four resonances. For a multiresonance
case the dependence of these quantities on the spectrum of the underlying closed system is studied.
We find that the global reorganization of the spectrum in the high coupling regime can be traced
back to local redistributions acting on an energy scale comparable to the widths of the interfering

resonances.

PACS number(s): 05.30.—d, 05.40.+j, 03.65.Nk, 24.60.—k

I. INTRODUCTION

Recently, highly excited quantum systems have be-
come of increasing interest in many areas of physics.
Since at sufficiently high excitation energies many-
particle systems have the possibility to decay, they should
be treated as open systems [1-23]. As an immediate con-
sequence, the quantum states have a finite lifetime.

In a microscopic theory of open many-particle quan-
tum systems, the excited states of the system are con-
structed from the bound single-particle states (e.g., [7]).
Nevertheless, they may have a finite lifetime if their en-
ergy is above the threshold for particle decay. The Hamil-
tonian of the many-body system is usually given in the
form H = H® 4+ V, where H? is a one-particle poten-
tial and V describes the residual interaction between the
constituents. The latter one couples not only the un-
perturbed many-particle states (Slater determinants) to
each other leading to the discrete many-particle states,
but also couples these discrete states to the open and
closed decay channels. So in addition to the internal
coupling between discrete states, also a coupling between
bound and scattering states (external coupling) as well
as a possible channel-channel coupling need to be con-
sidered. Due to this external coupling, the subspace of
open decay channels forms an environment for the orig-
inally discrete states (quasibound states embedded in the
continuum [7]). The system becomes open. The Hamil-
tonian of such an open quantum mechanical system is
non-Hermitian. Its eigenvalues are complex and deter-
mine both the energy positions and the inverse lifetimes
(widths) of the states.

As was shown in previous investigations (e.g., [21]), the
transition from low to high values of the external coupling
strength leads to a separation of a few resonances (trap-
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ping effect), which dominate the decay process. Initially,
an increase of the external coupling strength causes a
monotonic growth (in absolute value) of the imaginary
parts of all complex eigenvalues of the effective Hamil-
tonian. This growth continues until the resonances start
to overlap and the interference between neighboring res-
onances becomes important. In a certain critical region,
a level repulsion in the complex plane arises: A few eigen-
values gain a larger imaginary part while the other ones
get a drift back to the real axis — in spite of the fact
that the coupling to the open decay channels is increased
— i.e., they are getting trapped.

Thus the structure of the system is, at low external
coupling, comparable to that of the corresponding closed
system. The corrections to the positions of the discrete
states are small; the values of the partial widths can be
calculated in the usual way by means of the spectroscopic
and penetration factors. The structure of the resonance
states at high coupling is, however, strongly influenced
by the environment of decay channels: in the complex
plane a hierarchy of states is formed which is strongly
influenced by the structure of the environment, in par-
ticular by the number and the wave functions of the open
decay channels.

It is the aim of this paper to investigate in detail the
properties of an open quantum system in the critical re-
gion, where it finds its new order. In doing this, we
incorporate the characteristics of an open system into a
simple matrix model (Sec. II). The energies and total
decay widths of the states of the system considered are
calculated from the eigenvalues of a non-Hermitian, ef-
fective Hamiltonian which can be constructed from the
spectrum of the system of bound states together with
their coupling vectors to the decay channels.

In a realistic calculation (e.g., in the framework of the
nuclear shell model), the positions and wave functions
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of the discrete states are determined by the average po-
tential and the residual interaction (internal mixing). In
our calculation, we do not specify the internal coupling
strength. We rather assume that it is contained implicitly
in the spectrum of H?, i.e., we simulate different internal
mixings by studying different spectra of the Hamiltonian
H°. The external mixing of the discrete states is given
by an additional, complex-valued term in the effective
Hamiltonian, which contains the coupling of the discrete
states to the open decay channels. The channel-channel
coupling is neglected in our calculations.

In Secs. III and IV, we study the basic mechanism of
the interaction of resonances by considering analytically
and numerically the cases of two and four resonances.
The level repulsion in the complex plane as well as other
properties of the system are investigated at the critical
point. In Sec. V, a more complicated case of 128 reso-
nances and eight open decay channels is treated numer-
ically, in order to demonstrate how the local trapping of
resonances influences successively the whole spectrum.
Eigenvalues and eigenfunctions of the effective Hamilto-
nian are calculated for the multiresonance case in depen-
dence on the coupling strength to the decay channels. We
examine the expansion coefficients of the wave functions
in relation to the eigenfunctions of the closed system and
calculate the degree of mixing in relation to that basis.
Using different spectra for the closed system, we investi-
gate the role of the mean overlap of resonances for identi-
fying the value of the critical coupling strength. Finally,
as an example of an observable, the cross section of the
two-resonance case is considered in Sec. VI as a function
of the external coupling strength. Some conclusions from
our results are drawn in the last section.

II. THE MODEL

Our analysis is based on the following model (cf. Ref.
[24]). We consider a quantum system consisting of N > 1
bound states |®9),i = 1,2,..., N, and K open two-body
decay channels |x.(E)),c = 1,2,..., K, which are coupled
to the |®?) via a residual 1nteract10n V. Supposing these
states form an orthonormal set, the total Hamiltonian
has the form

H= Z"I’O

i,j=1

+ZZ/dE (120 Ve (B) (xe(B) + Hel] . (1)
c=1 =1

Here, the H?] denote the matrix elements of the bound-
state Hamiltonian. The vectors V¢ with components
VE(E) = (2?)v/aV|x.(E)) are supposed to be pairwise
orthogonal, which is equivalent to the suppression of the
direct reaction part. Their norm, or the average cou-
pling matrix element v2 = % SN |V|?, is a measure
of the coupling strength to the corresponding channel c.
By means of the coupling parameter «, we will vary the
coupling strength between bound and scattering states.
Additionally, we restrict ourselves to time-reversal invari-
ance. That allows us to choose all H}; and V°(E) real.

0.(29] + Z / dE|xe(E)) E (xe(B)|
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Note that the internal coupling is given implicitly via the
distribution of the eigenvalues of H°.

If one neglects the potential scattering phase factor,
the scattering matrix Sy, (E) corresponding to the Hamil-
tonian # can be written in the form [24]

Sab(E) = bap
~2mi 3 VH(E){[E — HT(B)] 7}, VP(E)
i (2)

where b and a denote the in- and outgoing channels, re-
spectively, and

He'f(E) = H° + F(E) (3)

is the effective Hamiltonian in the subspace of bound
states. Due to the second term F(E), Heff contains
explicitly the coupling to the environment of decay chan-
nels. The matrix elements of the operator F'(E) are

Fi(E) = Z/dE' VEE)VAE)

EO_F (4)
We restrict ourselves to an energy region far away from
decay thresholds. Then the vectors V¢ can be consid-
ered as energy independent. In this case F;; is purely
imaginary and energy independent as well:

Fy = —in Z Vevy, (5)
so that Heff takes the form
Heff = HO —inVV T, (6)

In our analysis, we consider the complex eigenvalues
of the effective Hamiltonian as a function of the coupling
strength parameter a. Furthermore, we analyze the be-
havior of the corresponding eigenfunctions |[®g) and their
mixing via the decay channels for each resonance in de-
pendence on a.

First, let us consider the eigenfunctions. Due to the
non-Hermiticity of the effective Hamiltonian H®ff one
has to distinguish between its left and right eigenvectors:

HEF (@) = Exl®F) (7)

(HIT)* @) = E|®R), (8)
with )

SR = ER - %FR (9)

Since He®ff is symmetric, it can be diagonalized by a
complex orthogonal matrix B fulfilling

BBT =BTB =1. (10)

The (complex) matrix elements brr of B connect the
eigenvectors |®%) and |®%) to the eigenvectors |®%) of
the bound-state Hamiltonian HO:

|®R) = ZbRR'l‘I’%l)’

ZbRkll‘I’R' ) (11)
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and, correspondingly,

(Bl = brr (@R,
Rl

(@l =) _brr (2% - (12)
RI

Equation (10) implies the biorthogonality relation
(@h|®R) = rr- (13)

On the contrary, the right eigenvectors as well as the left
ones are, in general, not orthonormal among themselves:

(Pr|®PR) # SRR (14)

S lbrr? = [(Rebrr:)? + (Imbrr:)?]
o

R!
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In the following, we will use the right eigenvectors only,
and denote |®7%) simply by |®g).

After considering the eigenvalues of H¢ff the next
quantity of interest is the o dependence of the scalar
product Ng = (®g|®r). As mentioned above, due to
the non-Hermiticity of H¢ff it is not normalized to 1,
and its deviation from unity may serve, therefore, as a
measure of the “degree of openness” of the system. From
Egs. (11) and (12) we get

NR = <¢R|¢R> = Zb;ZR’bRR' = Z |bRR’|2 (15)
R' R'

which is real and > 1 since

> "[(Rebrr:)? — (Imbgrr:)*] = Re » (brr')* = (BBT)rr =1 . (16)
T

R'

For very small a we have a nearly closed system and,
therefore, Ng(a) ~ 1. With increasing o the values of
Nr(a) are expected to grow in dependence on the mix-
ing of the different original states. A detailed discussion
of the behavior of Ng(a) will be given in the next two
sections.

Another quantity reflecting the mixing of a given state
R relative to the eigenstates of the bound state Hamil-
tonian H? caused by the second term, F(E), in H*ff is
the external mizing

In ==Y |brr|*In|brr|*. (17)
Rl

Such a definition is motivated by the relation of the
external mixing to the information entropy I given by
I =3 pIgr [17]. The coefficients bre' in Eq. (17) are
obtained from the brp: [cf. Eqgs. (11) and (12)] by a
simple rescaling, so as to obey the requirements for prob-
ability amplitudes:

lbrR|?

_DBRR'L g
> lbrrr |2 —

R!

0< |brr|? = (18)

III. THE BASIC MECHANISM OF TRAPPING

Let us first investigate the simple case of two reso-
nances and one open decay channel.

A theoretical study of interference effects in two-
resonance systems can be found in [2,14]. An experimen-
tally accessible example of such a system is the isospin
doublet of 2 resonances in ®Be [6,14]. These resonances

have approximately the structure of 7Li 4+ p and "Be +n,
and they lie at excitation energies around 16.6 and 16.9
MeV. A detailed experimental investigation of these res-
onances in ®Be was performed in [25]. As a consequence
of the isospin symmetry of the nuclear force on one hand,
and of the symmetry of the two configurations with re-
spect to the Coulomb force on the other hand, this dou-
blet is expected to be nearly degenerate. This means
that the two resonances are in strong interference with
each other and are obviously close to the critical point of
trapping.

The simple example of two states and one open decay
channel allows us to investigate the basic process of the
repulsion of two complex eigenvalues most clearly. The

coupling vector V (normalized to length 27"‘) is deter-
mined by a single angle ¢: V = ,/%—?(cos ¢,singp), so

that Eq. (6) can be written as

gerf = (L0 L9 cos2 ¢ cospsing (19)
0-1 cospsinp sin® g ’

where without loss of generality we have chosen the eigen-
values of H? to be 1. In this case of two resonances and
one open decay channel, the symmetry of the problem is
completely determined by the coupling vector. By means
of the angle ¢ either one of the resonances couples more
strongly to the decay channel than the other one or both
couple with the same strength (¢ = 7). The eigenvalues
of this matrix are

£+ = —ia + /1 — 2ia cos2p — a?. (20)

The influence of the parameter ¢ in the Hamiltonian
(19) on the eigenvalue picture is illustrated by means of
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Figs. 1(a) and 1(b). The motion of the eigenvalues is
drawn here as a function of the coupling strength o for
two different values of ¢ (note that for ¢ = /4 the to-
tally symmetrical situation is generated, where both res-
onances couple with equal strength to the decay channel).
In both cases an attraction of the levels in the complex
plane is observed for values a < @it and a repulsion for
a > Qepie. Here, acrie is defined as that value of a at
which the two resonances are at a minimal distance from
each other. That means that ac,;; is a local parameter
defined as the critical point at which the level attraction
of two resonances turns into level repulsion. Note that
the attraction of the resonances for a < a,i; corresponds
to an attraction of the real parts of the eigenvalues (i.e.,
of their positions in energy) only. Analogously, the level
repulsion for o > a.;+ affects only the imaginary part;
in particular, for ¢ = 7 the two states are found to be
degenerate in energy.

For a given bound-state spectrum, the minimal dis-
tance of the two eigenvalues in the complex plane is de-
termined by the symmetry of the coupling vector V. In
the case of Eq. (19) with total symmetry of V' (¢ = %)

101'5 [ 3
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T2
)

(a) |

T T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 1.00

)
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107+ J

10-3 T L B T T T M T
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00
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FIG. 1. Propagation of the eigenvalues of H°f in the
complex plane €g = Egr — %FR with increasing coupling
strength o for two resonances and one open decay channel
(N =2, K =1). (a) corresponds to a symmetrical coupling
vector (¢ = m/4), (b) to an asymmetrical one (¢ # w/4). The
real energy axis can be scaled arbitrarily; for definiteness, we
put the two states at « = 0 at Er = =£1.
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the minimal distance is zero, while it is larger than zero
for other ¢ [compare Figs. 1(a) and 1(b)].

It is interesting to trace also the quantity Ng(a), Eq.
(15), for each resonance. A simple analytical expression
for Ng(a) can be obtained for the case of a symmetri-
cal vector V. Let us denote the eigenfunctions of Heff
normalized according to Eq. (13) by

=N () (21)

with Ny = 1/4/1+ ¢%. From Eqgs. (7) and (20) one

easily finds that ¢+ = 1(£va?2 -1 —4). The critical
value of the coupling strength a is determined by the
requirement £, = £_ [cf. Eq. (20) for ¢ = %] giving
acrit = 1. Because of the total symmetry of the coupling
matrix, the two states are degenerate in real energy for
a > 1. In the three interesting limits « — 0, a — 1, and
a — oo the wave functions |®.) are

a=0:¢i={o(l=><§+=(;), <I>__=((1)>,

1 /1 1 1
a— 00: - +1=>0, » — o - — s
Pe N \/5(1) \/5(—1>

¢+=¢_—> (0)00
—1

From the last equation one sees that at a = a4 = 1,
where the two eigenvalues coincide in the complex plane,
the scalar product of the wave functions goes to infinity:

Ni(a)t

(22)

a—1l:¢r > —1=>

— 0. (23)
a—1

For ¢ # m/4 the singularity of Ni(a) at o = acpit is
replaced by a finite maximum.
Let us now consider the information entropy. For the

case of the two resonances and one open decay channel,
Egs. (17), (18), and (21) give the result (R = +; R =

1,2; byy = Nyi; bis = Nidy)
az
Ii(a)=In2— ———Ina
+(@) 1-vVi-a2
2

+[1_aﬁ - 1} In(1-+v1-a2), (24)

for the range 0 < a < 1, whereas for a > 1 the external
mixing function is given by

Ii(a) =1n2. (25)

From Egs. (24) and (25) we see that the two mixing
coefficients I4 are equal to each other. It can be proven
that this result is not only true in the case of symmet-
rical coupling considered here, but remains valid for any
coupling of two resonances to one channel, i.e., for arbi-
trary . Indeed, taking into account the relations (11)
and (12), the biorthogonality condition (13) implies that

@2+ (@8)2=1 (26)
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and

aWa® 4+ 6P —o. (27)

Taking the square of the last equation and inserting the
resulting expression into Eq. (26 ), we find

@2 = (29, (28)
and, consequently,
2217 = 1281 (29)

From Eq. (29), one immediately sees that in the case
of two resonances and one decay channel it always holds
that My (a) = N_(a) and I (a) = I_(a).

As a result of the investigation of the two-resonance
one-channel case we state the following.

(i) By switching on the coupling to the environment,
the states of the underlying closed system become un-
bound. The energy positions and lifetimes of the two
resonance states follow from the eigenvalues of an effec-
tive non-Hermitian Hamiltonian. The movement of the
eigenvalues in the complex plane as a function of the

12>+13>
100'5 E
2> S eenn 13>
> 14>
=a a
— 3 12>-13>
107 5 . . ]
(a)
103 —T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 0.50 0.75 1.00
ER
1.50 e T | — T T T T
12>+413>
1.254 .-/ g
1n(3)
1.00 125135 |
11> & 14>
o~ 0.754m@) K -
r— | N
0.50 4
0.25 B
1 (b)
0.00 T T R T M T T M T T
0.00 025 050 075 100 125 150 175 2.00
o
FIG. 2. (a) The same as Fig. 1(a), but for N = 4. The

eigenvalues of H® are chosen symmetrically around E = 0.
(b) The corresponding mixing functions Ir [cf. Eq. (17)] as a
function of a. The labels |1) to |4) enumerate the resonances;
for large o the two inner resonances are just the symmetrical
and antisymmetrical superposition of two of the initial states.
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coupling parameter a shows an increase of the imagi-
nary parts of the two eigenvalues, and an attraction of
their real parts as long as the coupling is below acpi.
At a = acrit, the eigenvalues have a minimal distance
in the complex plane; which depends on the symmetry
of the continuum coupling and the internal mixing of
the bound states. The value a..;; is therefore a locally
defined quantity, describing a critical point of two inter-
fering resonances. At larger values of a, a repulsion of
the imaginary parts is observed.

(ii) The process of rearrangement is also reflected in the
eigenfunctions. Because of the non-Hermiticity of H¢ff,
(®4|®P4+) is not normalized to unity. For very small as
well as for high values of the coupling strength we have
(®+|®+) =~ 1 as in a closed system, which is described by
a Hermitian Hamiltonian. But for values of a near the
critical point, (®4|®4) differs strongly from 1. The max-
imum value of (®4|®.) is reached at the critical point
where the eigenvalues have the minimal distance from
each other. The more the two resonances touch each
other, which means the smaller the minimal distance is,
the larger the value for (®1|®.). In the totally symmet-
rical case of two resonances it goes to infinity.

(iii) Further, the mixing of the wave functions, It (),
rises with the external coupling strength « up to the point
where a = apit- In the symmetrical two-resonance case
the external mixing reaches its maximal possible value of
In 2 and stays constant for a > acpst.

T T T hd T = T ’ T T
o / i
10 2> e B>
100>y m
N i |
T
f—~ :
1072 5 E
(a)
103 T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 1.00
ER
1.50 — T T T T T
In(4
13>
1.25 Y .
In(3)] //
100+ .
~ ’ 14>
— 0.754 =
In(2))
0.50 4 1
0254 ! 4
0.00 <L : : : :
0.00 025 050 075 1.00 125 150 175 2.00
a
FIG. 3. The same as Fig. 2, but for an asymmetric spec-

trum of H.
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IV. THE FOUR-RESONANCE,
ONE-CHANNEL CASE

Before investigating the general case of many reso-
nances and more than one decay channel, we present re-
sults obtained for four resonances coupled to one decay
channel. This case is still a simple one. It is, however, free
of the peculiarities of the two-resonance case and already
contains the whole variety of phenomena characteristic
of the many-resonance case. We traced the eigenvalue
picture of Hff as well as the function I defined by Eq.
(17) for both a symmetrical and an asymmetrical dis-
tribution of the bound states and for the two coupling
vectors V3 =1/2{1,1,1,1} and Vo = 1/2{1,-1,1,—1}.

In Fig.2 the results are presented for a bound-state
spectrum symmetrical around 0 (E; = —-1,E;, =
—1/3,E3 = 1/3,E, = 1) and the completely symmetri-
cal coupling vector V. Figure 2(a) shows that, although
all bound states couple with the same amplitude to the
decay channel, the drift velocity of the four eigenvalues is
different. The two resonances lying at the border of the
spectrum get trapped first by the two inner states. Since
the neighborhood of the two two-resonance systems (|1)

N T T T A T T T M T T
051 (a) T T
0.4- .
E 034 - 4
é ................. i3
£ 029 1>, 14> e, 7
~ .....::;::: :::::
ﬂ 0.14 R, h
""“Hnmumuuunm
ey
00 T T T . T d T T T A
0.00 025 050 0.75 100 125 150 175 2.00
(04
&
o
e
&~
a
0.0
0.00
(04
FIG. 4.
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and |2) and |3) and |4)) is not symmetric, these trappings
resemble the situation of Fig. 1(b). The two local broad
modes formed interfere at further increasing values of
in a symmetrical way, leading to the middle part of Fig.
2(a).

In Fig. 2(b) the mixing functions Ig for the four reso-
nances are displayed. One sees that the functions I, and
I3 increase more strongly than I; and I. This is due to
the fact that the two states in the middle of the spectrum
already interfere in a constructive way for small o with
left and right neighbors. As a result, they have both a
larger mixing [cf. Fig. 2(b)] and a larger effective cou-
pling to the decay channel — resulting in a larger width
[cf. Fig. 2(a)]. Note that with increasing o any eigen-
state of Heff differs more and more from the original
bound state at a = 0 by collecting admixtures from all
eigenstates of H®. The relative signs of these admixtures
determine the specific interferences and lead to the be-
havior shown in Fig. 2. The behavior of Ig for larger
o, approaching a constant for the states |1) and |4) and
having even a decreasing tendency for the resulting anti-
symmetric combination of states |2) and |3), is due to the
negative interference between different admixtures. Since

05 v T T T T T T T T 1
12>-13>

0.4 4

Sy by VN

I bep /N

Sum of the expansion coefficients brr: connecting the eigenfunctions of H® and of H°ff as a function of a for

N =4, K = 1: (a) and (c) for the completely symmetrical coupling vector Vi, (b) and (d) for the asymmetrical vector V3. (a)
and (b) correspond to a symmetrical spectrum of H® (eigenvalues at E = —1,—1/3,1/3,1), (c) and (d) to an asymmetrical one

(eigenvalues at £ = —1,—0.8,1/3,1).
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the wave functions of the two states which are trapped at
the first stage of the process do not change significantly
with a further increase of «, their mixing functions re-
main almost constant, whereas the antisymmetrization
during the resonance repulsion at the second hierarchy
level (between resonances |2) and |3)) leads effectively
even to a decrease of the corresponding mixing function.

Figure 3 contains the analogous data for the asym-
metric bound-state spectrum F; = —1,E; = —0.8, E3 =
1/3,E4 = 1. Here the results are similar to those dis-
cussed above. The main differences, caused by the dis-
tortion of symmetry, consist in the absence of a point of
total degeneracy of two eigenvalues in the complex plane,
and in the resulting mixing functions.

In all cases shown in Figs. 2 and 3, the maximal value
Ip = In4 is reached only for the short-lived state. This
is in contrast to the two-resonance, one-channel case dis-
cussed in Sec. III where we found I = In2 (for a > 1)
for both the short-lived and the long-lived resonances.
This is connected to the fact that the external mixing
is produced at the critical points. As a consequence, the
number of critical points passed by a resonance during its
evolution determines its mixing, and broad modes gain,
with increasing «, a larger value of Ir as compared to
the majority of trapped states.

Another quantity reflecting the rotation of the
states under the influence of the external coupling,
| S g brr'|/N, is traced in Fig. 4. At small coupling
strength all eigenvectors are normalized and orthogonal
to each other, and the corresponding functions start at
0.25. Reflecting the increasing interference, with ris-
ing « the eigenvectors are rotating in Hilbert space to-
wards each other. This corresponds to the attraction of
eigenvalues observed for those a. At the critical point
the eigenvalues reach their minimal distances, and the
mixing coefficients bpr: change most rapidly. Finally,
at high coupling the eigenvectors are getting more and
more orthogonal to each other again. The broad mode
which is formed in the strong coupling region points (in
Hilbert space) asymptotically exactly into the direction
of the coupling vector, and the corresponding value of
| > g/ brr'|/N is sensitive, therefore, to the relative signs
in the two coupling vectors introduced above. The inter-
ference between different resonances decreases again al-
though the broad mode covers all of the trapped states,
and we arrive at a situation of overlapping but almost
not interfering resonances.

Summarizing, we state that an investigation of the ba-
sic process of trapping allows us to understand the reor-
ganization occurring in many-particle quantum systems
at high level density. The basic process can be investi-
gated numerically and analytically without further ap-
proximations.

V. THE MANY-RESONANCE,
MANY-CHANNEL CASE

‘We turn now to more complex situations. As an exam-
ple we present the results obtained for eight open decay
channels (rank[F;;] = 8) and 128 bound states given by
the eigenvalues of the matrix H°. Two different initial
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distributions of the bound states are considered. In the
first case a uniform distance between the states is cho-
sen, so that the states are lying symmetrically around
some value chosen arbitrarily at Eq = 0 [cf. Fig. 5(a)].
In the second case 100 bound states are placed in the
same manner, symmetrically around the Fy, but with a
much smaller distance. The remaining 28 bound states
are placed with a larger next-neighbor distance, but also
uniformly around the energy region of the densely lying
states with a slightly shifted center [Fig. 6(a)]. Thus the
128 states are distributed over a certain energy interval
in a different manner in the two cases.

We performed the investigations as a function of the
external coupling to the open decay channels. As we will
show below, the behavior of the system can be described
as a successive pairwise action of eigenvalue collisions in
the complex plane, as described in Sec. II. Generated
by this basic process, a hierarchical arrangement of com-
plex eigenvalues with respect to their imaginary parts is
generated.

Figure 5(a) shows the motion of the eigenvalues £ =
Egr— %I"R of the effective Hamiltonian H¢ff in the com-
plex plane as a function of a for the case of the uniform
initial distribution of the bound states. As in the two-
resonance case, all of the eigenvalues move into the com-
plex plane with increasing a — up to a critical value of
«a at which trapping arises. Note that this value is an
individual one for every pair of resonances. It depends
on the positions of the resonances in the spectrum and
on their coupling amplitudes to the decay channels.

At still larger values of o some of the resonances are
getting long lived as a consequence of trapping, while the
widths of the remaining ones increase more rapidly than
before. The broad resonances envelope the underlying
narrow resonances which no longer disturb the propaga-
tion of the broad resonances. With a further increase of
a, the broad states get into conflict with other broad reso-
nances in their new neighborhood of eigenvalues. Again,
each pair of interfering resonances reaches a certain crit-
ical point of a, where trapping occurs. So, with increas-
ing a, successively more and more resonances are getting
trapped. This goes further up to that point where only
K broad states remain (K = 8 is equal to the number
of open decay channels = rank[F;;]). They are no longer
coming into conflict with each other by a further increase
of @ (note that channel-channel coupling is not contained
in our calculations).

The individual critical points for the different eigen-
value collisions are clearly visible in Fig. 5(b) where the
imaginary part of the complex eigenvalues of H¢¥7 is dis-
played as a function of the coupling parameter a. Caused
by the special symmetrical distribution of the discrete
eigenvalues of H?, two resonances always follow one curve
in Fig. 5(b).

Coming back to the discussion in Sec. III, Figs. 5(a)
and 5(b) display both the symmetrical and nonsymmet-
rical collisions of two eigenvalues. Only in that case when
the two colliding resonances have exactly the same widths
(which means that they are lying symmetrically relative
to each other and have equal coupling to the decay chan-
nels) does the minimal distance equal 0. In this case with
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FIG. 5. Propagation of the eigenvalues of H/f in the
complex plane with increasing o for the uniform distribution
of bound states, V = 128, K = 8 (a); the resonance widths
I'r (b), scalar products (®r|®Pr) (c), and mixing functions
Ig (d) as a function of a.

full symmetry, the energy attraction for o < a.ri¢+ and
width repulsion for & > ;¢ can be seen most clearly.
The two resonances stay degenerate in energy above the
critical coupling strength a..;;. The overlapping of both
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1504 .

1254 & 4

<<I>RI<I>R>

— T T T T 1
0 1x103 2x1073 3x10 4x107 5x10

a
FIG. 6. The same as Fig. 5, but for the second distribu-
tion of bound states described in the text.
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resonances is not avoided.

The symmetry of the resonance distribution is deter-
mined by the two parts of the effective Hamiltonian, H°
and F. In our model, H® is chosen with vanishing non-
diagonal matrix elements, while the diagonal matrix ele-
ments are set by hand. The non-Hermitian part F con-
tains the coupling to the environment of decay channels.
Both parts determine the symmetry of the problem and
therefore the minimal distances in the eigenvalue colli-
sions, as shown in Fig. 1. As a result, successive energy
attractions and width repulsions are produced, at some
critical values of o, which are based on a local mecha-
nism, acting on an energy scale of the order of magnitude
of the widths of two interfering resonances. The result
is a global figure of hierarchically (with respect to their
widths) arranged eigenvalues of the whole spectrum.

Not only the complex eigenvalues of the effective
Hamiltonian show signatures of this reorganization pro-
cess, but also the eigenfunctions. As shown in Fig. 5(c),
the scalar product Ng = (®Pg|®Pr) is sensitive to the re-
distribution of the resonant states. The values of N for
the eight broadest states are drawn as bold points. One
sees that for very small a (i.e., in the regime of well sep-
arated resonances) the values of all N are close to 1.
Whenever a = ac,it, level repulsion of two resonances
occurs and a maximum value of the corresponding Ny is
reached. For a > ac,;t, they go back to values close to 1.
The sharpness of the peak and the maximum of its value
a measure of how close the eigenvalues of the two re-
pelling resonances, which got into conflict, come to each
other. Thus the symmetry of the problem is reflected
also in the wave functions. That means that the smaller
the minimal distance of two eigenvalues in the complex
plane, the larger the values of the Ng = (®g|®g). If
the resonance overlapping at the critical point of a is not
avoided (total symmetry of two interfering resonances),
a degeneracy is produced and the corresponding Ny rise
to infinity at a = acpse.

Figure 5(d) shows the mixing coefficients Ir of the
eigenfunctions of H®ff relative to the basis of bound
states (eigenfunctions of H®) as a function of o. The
critical points are clearly visible also in this function.
The Ip increase strongly up to the point where the level
repulsion takes place. At these points the wave functions
suffer crucial changes [Fig. 5(c)]. Beyond the critical re-
gion (a > 5.8 x 10~2), the mixing coefficients of both the
broad and the trapped wave functions saturate at a con-
stant value which is, however, lower than the equilibrium
value I.q.; = 1n128 = 4.852.

In Figs. 6(a)-6(d) the results obtained for the second
(nonuniform) initial distribution are displayed. The qual-
itative characteristics of Figs. 5 and 6 are the same. In
both cases the hierarchical rearrangement of the eigen-
values caused by the local mechanism of trapping of res-
onances which takes place successively with increasing
a is observed. It is remarkable that — contrary to the
case with uniform distribution shown in Fig. 5 — all the
broad states arise from the region of high level density.
The chance of a strong interference and therefore of an
eigenvalue collision is much higher in this energy interval
than in the other one with lower level density. As a con-
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sequence, more critical points appear up to a certain a,
and the widths of the broad states are larger than those
of the states in the low density region. As a result, the
eight broad states of the highest hierarchy are already
formed, when the 28 remaining resonances of the region
of low level density start to take part in the interference
process. Therefore they have the only chance of getting
trapped.

Summarizing the results obtained up to now, we con-
clude that the global picture for the eigenvalue distribu-
tion of the effective Hamiltonian is created by an effect
which acts in local energy regions. This behavior is in-
dependent of the chosen initial distribution. With grow-
ing coupling to the environment a sequence of critical
points arises in any case, i.e., attractions and repulsions
of eigenvalues in the complex plane occur. This process
terminates when the number of broad modes is equal to
the rank of the coupling matrix, which is equal to the
number of open decay channels. These broad resonances
survive independently of each other and no further level
repulsion will occur. Therefore, it is natural to define
the critical point oY}, of the system as that value of «
at which K states are separated from the rest of the res-
onance states.

With this definition, Y}, turns out to be different for
the two considered initial distributions chosen by us. Av-
eraged over the whole spectrum, however, both systems
start with the same value of the mean level distance D.

Figure 7 displays the ratio of the mean resonance width
to the mean level distance, I'/D, for the uniform initial
distribution (dashed curve), for the distribution of a re-
gion of high and low level densities (solid line), and sep-

14 T T T T T T T
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I L 1 " L L 1 n 1 L 1 1 1 1 1
0 1x10® 2x10”° 3x107 4x102 5x10° 6x10° 7x107
Sys Sys
crit o Ocrit
FIG. 7. Ratio of averaged width to averaged level spac-

ing T'/D as a function of o for bound state distributions 1
(dashed line), and 2 (full line), and separately for the re-
gion of high level density of distribution 2 (dotted line). The
corresponding values of (I'/D)¢ri: and of a’¥’ are indicated.
Remarkably, the ratio I'/2D as a function of a is almost iden-
tical for the two level distributions and agrees with the one
derived for the Gaussian orthogonal ensemble. For the latter
the critical value of a equals 1/(wN), and the corresponding
critical ratio of T'/2D is (for eight open channels) 2 (see the
inserted diamond).
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arately for the region of high level density alone (dotted
curve) as a function of o. The critical points for the
three situations are indicated. As can be seen, a nearly
linear relation between I'/D and « exists. Besides this,
the first two curves show approximately the same slope.
As a consequence, not only is a’¥;, different for the cases
considered, but also the corresponding value of (I'/D):¥;,.

The critical values (I'/D):¥;, for the first two cases con-
sidered above differ by a factor of ~ 3. If one considers
only the region of high level density (third case), where
the main process of the rearrangement of the system oc-
curs, the difference is even larger.

It is worthwhile to compare the results for the some-
what artificial looking bound-state distributions de-
scribed above with those for generic distributions valid
for a wide class of nonintegrable systems. For the lat-
ter, the statistical properties of spectra are well described
by random matrix theory; for the time-reversal invariant
systems considered in this paper the relevant ensemble
to compare with is the Gaussian orthogonal ensemble
(GOE). The relation between I'/D and « for the GOE
has been considered, e.g., in Ref. [9]. Denoting the quar-
ter length of the spectrum by A and introducing the di-
mensionless coupling strengths z, = mNv2/\, where v2
is the average coupling strength to channel ¢, one can
show that the critical value of z. at which a broad mode
separates from the spectrum is just equal to 1. Using
the sum rule 3N T; = 2x Zf:ﬂ”c and the fact that

1=

the overall mean level spacing is D = 4A/N, one finds

that T/D = 7N Zf__l v2/(2)X). For the case of N res-
onances distributed in the interval (—-2,2) (A = 1) and
K open channels with v2 = « for all ¢ = 1,..., K (this
corresponds just to the situation assumed for the other
two bound-state distributions) this implies the relation
I'/D = nNaK/2. From z..;; = 1 it follows that the crit-
ical value of a equals 1/(wN) so that the mean overlap
at the critical point is given by (I'/D)¢pie = K/2. For
N = 128 and K = 8 this point is shown in Fig. 7. Re-
markably, the line I'/D as a function of « practically coin-
cides with the corresponding lines for the equally spaced
level distribution as well as for the “clustered” level distri-
bution 2. Nevertheless, the corresponding critical points
differ significantly, showing the sensitive dependence of
the critical coupling strength on the details of the level
distribution.

We conclude that the critical point of the system can-
not be determined from the knowledge of only T'/D. The
probability of eigenvalue collisions is surely connected
with T'/D, and the chance that the value of oY}, is
reached and the last hierarchy is formed is higher for
larger values of I'/D. But no definite conclusions con-
cerning the critical point can be drawn for any fixed num-
ber of I'/D. The critical point does not scale by means
of that quantity. As can be seen in the second exam-
ple, I'/D depends also on the energy region taken into
account. If one considers only the region of high level
density, the critical value of T'/D is much larger than in
the other case. In that region, most of the eigenvalue
collisions occur and all of the broad modes arise from it.
The remaining 28 resonances at the border are getting
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trapped when the global process of trapping has already
terminated and the eight broad states have been formed.
These facts call for caution in using I'/D for the classi-
fication of a system with respect to the trapping effect.
They emphasize the importance of the local, individual
processes for the global redistribution of resonances.

Based on these results, we point out that a hierarchical
formation of the eigenvalues occurs due to local fluctu-
ations of the level density. The global rearrangement is
generated by the local mechanism of attraction and re-
pulsion of two eigenvalues in the complex plane. Features
of this process can be seen also in the corresponding wave
functions: The values Ng(a) and Ir(a), defined in Sec.
11, reflect the evolution of the system in a significant man-
ner. Finally, we saw that regions of high level density are
regions favored for trapping. One has to keep in mind,
however, that T'/D does not determine quantitatively ei-
ther the local level collisions or the global value alY,.
It is impossible to decide, for any fixed value of I'/D,
at which stage the reorganization process in the system
actually is.

VI. THE CROSS SECTION

In order to investigate in what manner the trapping
effect can be seen in an observable quantity, we have
calculated the cross section of the symmetrical two-level
system described analytically in Sec. III. The cross sec-
tion is calculated from |1 — S|? with the expression for
the S matrix given by Eq. (2). We considered a symmet-
rical situation of two states coupled with equal strength
to one open decay channel.

The three-dimensional Fig. 8 shows the total cross sec-
tion over the interesting energy range as a function of a.
In Figs. 9(a)-9(c) the total cross section for three values
of a (a = 0.08, 1, 4) is displayed separately (solid lines).
In order to demonstrate the importance of interference ef-
fects, two Breit-Wigner curves are drawn (dashed lines)
— with parameters corresponding to the energies and
widths given by the complex eigenvalues of the effective

[§9]
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FIG. 8. The quantity |1 — S|? determining the total cross
section for N = 2, K = 1 as a function of a.
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FIG.9. Thesame as Fig. 8 for three values of the coupling
strength: o = 0.08, o = 1, and a = 4 (solid curves); the Breit-
Wigner curves calculated from the complex eigenvalues of the
two resonances for the same o (dashed curves).

Hamiltonian. So the dashed lines give the picture of the
cross section if one assumes isolated states which do not
interfere with each other.

For small a the resonances are well isolated, they have
small widths, and their overlap is nearly zero. The cross
section in the small coupling regime is well approximated
by the two Breit-Wigner curves. Then, with increasing «,
one observes a strong increase of the average cross section
up to the maximum value 4, and the resonance structure
is getting broader. Besides the increasing widths of the
resonances, there is an energy shift in the position of each
eigenvalue in the direction of the other one. Therefore a
strong overlap is produced. At a = 1, the critical point of
level repulsion is reached. At this point both eigenvalues
are placed at the same point in the complex plane [see
also Fig. 1(a)]. Both resonances have the same lifetime
and the same energy position.

With a further increase of « one of the resonances gets
trapped, while the other eigenvalue receives a strong drift
into the complex plane [cf. Fig. 1(a)]. The latter eigen-
value dominates the decay behavior of the system. There
is no energy shift in the range o > acpit, i-€., at high cou-
pling strength the energy positions of both resonances
stay constant.

The cross section is changing from the figure of two well
separated resonances with nearly a Breit-Wigner shape
to a situation where only a dip in a broad structure can
be seen. At a > ari; the minimum in the cross section
at E = 0 is caused purely by interference — which can
be seen best in the cross section picture at o = 1.

Generally, it is difficult to draw conclusions on the po-
sitions and widths as well as on the strength of the two
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resonances if one knows only the cross section. At a = 1,
the cross section seems to be caused by the existence of
two resonances lying at the energies which the states at
a = 0 had. That means the level attraction for small o
cannot be seen in the cross section. Further, the area of
the two resonances is smaller than the area of the two
(isolated) Breit-Wigner resonances. Thus the analysis of
the total cross section would lead not only to incorrect
conclusions concerning the positions of the resonances
but also to widths and transition strengths being too
small. In this case, the missing strength is a result of
the interferences (see also [26] for a realistic situation).

As a consequence, one can follow the reorganization
process only from the explicit knowledge of the eigenval-
ues or eigenfunctions, i.e., it is necessary to measure di-
rectly the different time scales. In nuclear physics, the ex-
istence of different time scales has been very well known
for a long time and described by phenomenological mod-
els such as the doorway concept. A direct measurement
of the different time scales became possible recently in
molecules [27]. The results obtained there support the
conclusions drawn in the present work.

We would like to emphasize the smooth behavior of o
at the critical value, a., = 1. Indeed, as discussed in Sec.
III, for & = 1 the S matrix has a double pole, and quan-
tities like the scalar product A diverge. Nevertheless,
one can prove that observable quantities deduced from
the S matrix at the real energy axis are well defined. In
particular, the unitarity of the S matrix is not affected
by this double pole.

In order to check this statement, we note that in the
case of two states and one open channel the formula (2)
for the S matrix reads

V2

S(E,a)=1-2mi Y Fo (30)
+

where the Vy are the transition matrix elements
(®+|v/aV|x) between the bound states |®+) and the
channel wave function |x). Introducing the partial width
Y = %|(<I’i|\/af/|x)|2 and using the relation vy =
(®+|®+)'+ between partial and total widths [28], the
S matrix reads

S(E,a):l~iZM.
+

31
B &, (31)
As derived in Sec. II, (®4|®+) = Ny diverges at a =
acrit- Nevertheless, inserting Egs. (20) and (21) into
the expression obtained for S(E, o), we see that

1—- E?2 4+ 2iFE«a
1—-E2?2 -2iEa’
which is unitary for real F and for any a. Note that
the same result can be obtained without introducing the
notion of partial width by taking into account that Vi =
2 . V0sY with v) = v® = | /a/r.

Concluding this section, we see that the trapping effect
is hidden in the total cross section in a complicated man-
ner. Even in the simple two-resonance case, it is difficult
to resolve the two time scales created at high level den-

S(E,a) = (32)
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sity. Much more complicated is the interference picture
in the many-resonance case. In the many-resonance one-
channel case, only sharp dips embedded in a background
of very broad resonances arise. There is, however, some
evidence that the short- and long-lived resonances show
a different angular dependence in the differential cross
sections which we plan to discuss in a subsequent pa-
per. Nevertheless, reliable conclusions on the trapping of
resonances can be drawn only from direct lifetime mea-
surements.

VII. CONCLUSIONS

In open systems two types of forces appear. The struc-
ture of the underlying closed system is given by internal
forces while a so-called external force couples the system
to the environment and regulates the energy or particle
flow to it. Due to this coupling new features are gen-
erated in the system: properties from the environment
are imprinted onto the internal structure. So the inter-
nal force stabilizes the properties of the underlying closed
system, whereas the external one induces new properties
under the influence of the environment. If one examines
the evolution of the system with growing external force,
one observes a critical region where the system reorga-
nizes itself. Structural properties from the environment
are now visible, and in a comparatively small interval of
the external coupling the system finds a new structure.

The variation of the external coupling strength allows
an examination of the properties of the open system in
relation to those of the corresponding closed one. The
transition from the situation of equal distribution of life-
times to the hierarchical formation of the eigenvalues in
the complex plane is traced by us as a function of the
external coupling strength. As we have shown, this tran-
sition arises successively. It is determined by the local
properties of the level density for the discrete states as
well as by the specific form of the coupling vectors be-
tween bound states and continua. Critical points in the
coupling strength arise when the resonances interact with
resonances from their neighborhood, i.e., with resonances
neighboring in energy, and having lifetimes of the same
order of magnitude. Successively, with increasing exter-
nal coupling one critical point after the other is reached.
The local effect of trapping of neighboring resonances
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produces a global picture of a hierarchical formation of
the eigenvalues of all resonances in the complex plane.
The resonances of different hierarchies do not interfere
with each other due to the specific rotation of the corre-
sponding eigenstates in Hilbert space. The K broadest
states are pointing in the direction of the K coupling vec-
tors; the other ones are orientated orthogonal to them.

As a result of this local mechanism, the critical value
of the coupling strength at which the last separation of a
broad mode occurs depends not only on the overall I'/D
but on the local properties of the level density as well.
This calls for caution in using I'/D as a measure of the
degree of reorganization of the spectrum. Concerning the
total cross section, we found that the interference effects
between resonances may lead to an underestimation of
resonance widths and transition strengths, especially in
the region of critical coupling strength.

Thus the complete reorganization of the system is pro-
duced by numerous level repulsions of two resonances in
the complex plane. It is caused by a mechanism which is
efficacious on small energy scales and occurs successively
over the full energy range of the spectrum. The complete
figure of hierarchically arranged eigenvalues is produced
by local trapping of resonances. The basic process is the
repulsion of two complex eigenvalues which we studied
analytically and numerically by means of a simple exam-
ple of two states and one open decay channel.

The few broad modes gain large values of the imagi-
nary part of the complex eigenvalues, or in other words
they get small lifetimes. The number of broad modes is
equal to the rank of the external coupling matrix, which
is equal to the number of open decay channels. For the
rest of the resonances one observes, in spite of the large
coupling strength between bound and scattering states,
a drift of the eigenvalues backwards to the real axis. The
lifetimes of these trapped states are larger by several or-
ders of magnitude than those of the broad modes.
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